[ Pobierz całość w formacie PDF ]
analyzed using GC. The FAMES are dissolved in a suitable organic solvent that is then injected into a GC injection chamber. The sample is heated in the injection chamber to volatilize the FAMES and then carried into the separating column by a heated carrier gas. As the FAMES pass through the column they are separated into a number of peaks based on differences in their molecular weights and polarities, which are quantified using a suitable detector. Determination of the total fatty acid profile allows one to calculate the type and concentration of fatty acids present in the original lipid sample. 5.5.4. Chemical Techniques A number of chemical methods have been developed to provide information about the type of lipids present in edible fats and oils. These techniques are much cruder than chromatography techniques, because they only give information about the average properties of the lipid components present, e.g. the average molecular weight, degree of unsaturation or amount of acids present. Nevertheless, they are simple to perform and do not require expensive apparatus, and so they are widely used in industry and research. Iodine Value The iodine value (IV) gives a measure of the average degree of unsaturation of a lipid: the higher the iodine value, the greater the number of C=C double bonds. By definition the iodine value is expressed as the grams of iodine absorbed per 100g of 74 lipid. One of the most commonly used methods for determining the iodine value of lipids is "Wijs method". The lipid to be analyzed is weighed and dissolved in a suitable organic solvent, to which a known excess of iodine chloride is added. Some of the ICl reacts with the double bonds in the unsaturated lipids, while the rest remains: R-CH=CH-R + ICl ’! R-CHI-CHCl-R + ICl excess remaining The amount of ICl that has reacted is determined by measuring the amount of ICl remaining after the reaction has gone to completion (ICl =ICl - ICl ). reacted excess remaining The amount of ICl remaining is determined by adding excess potassium iodide to the solution to liberate iodine, and then titrating with a sodium thiosulfate (Na S O ) 2 2 3 solution in the presence of starch to determine the concentration of iodine released: ICl + 2KI ’! KCl + KI + I remaining 2 I + starch + 2Na S O (blue) ’! 2NaI + starch + Na S O (colorless) 2 2 2 3 2 4 6 Iodine itself has a reddish brown color, but this is often not intense enough to be used as a good indication of the end-point of the reaction. For this reason, starch is usually used as an indicator because it forms a molecular complex with the iodine that has a deep blue color. Initially, starch is added to the solution that contains the iodine and the solution goes a dark blue. Then, the solution is titrated with a sodium thiosulfate solution of known molarity. While there is any I remaining in the solution 2 it stays blue, but once all of the I has been converted to I- it turns colorless. Thus, a 2 change in solution appearance from blue to colorless can be used as the end-point of the titration. The concentration of C=C in the original sample can therefore be calculated by measuring the amount of sodium thiosulfate needed to complete the titration. The higher the degree of unsaturation, the more iodine absorbed, and the higher the iodine value. The iodine value is used to obtain a measure of the average degree of unsaturation of oils, and to follow processes such as hydrogenation and oxidation that involve changes in the degree of unsaturation. Saponification Number 75 The saponification number is a measure of the average molecular weight of the triacylglycerols in a sample. Saponification is the process of breaking down a neutral fat into glycerol and fatty acids by treatment with alkali: Triacylglycerol + 3 KOH ’! Glycerol + 3 Fatty acid salts of potassium The saponification number is defined as the mg of KOH required to saponify one gram of fat. The lipid is first extracted and then dissolved in an ethanol solution which contains a known excess of KOH. This solution is then heated so that the reaction goes to completion. The unreacted KOH is then determined by adding an indicator and titrating the sample with HCl. The saponification number is then calculated from a knowledge of the weight of sample and the amount of KOH which reacted. The smaller the saponification number the larger the average molecular weight of the triacylglycerols present. Acid value The acid value is a measure of the amount of free acids present in a given amount of fat. The lipids are extracted from the food sample and then dissolved in an ethanol solution containing an indicator. This solution is then titrated with alkali (KOH) until a pinkish color appears. The acid value is defined as the mg of KOH necessary to neutralize the fatty acids present in 1g of lipid. The acid value may be overestimated if other acid components are present in the system, e.g. amino acids or acid phosphates. The acid value is often a good measure of the break down of the
[ Pobierz całość w formacie PDF ]
|